返回
世界上最神奇的数字
首页
更新于 2024-12-22 16:41
      A+ A-
上一章 目录 到封面 加书签 下一章
    看似平凡的数字,为什么说他最神奇呢?我们把它从1乘到6看看
    142857x1=142857
    142857x2=285714
    142857x3=428571
    142857x4=571428
    142857x5=714285
    142857x6=857142
    同样的数字,只是调换了位置,反复的出现。
    那么把它乘与7是多少呢?我们会惊奇的发现是999999
    而142+857=999
    14+28+57=99
    最后,我们用142857乘与142857
    答案是:20408122449前五位+上后五位的得数是多少呢?
    20408+122449=142857
    ===分割線===
    关于其中神奇的解答
    “142857”
    它发现于埃及金字塔内,它是一组神奇数字,它证明一星期有7天,它自我累加一次,就由它的6个数字,依顺序轮值一次,到了第7天,它们就放假,由999999去代班,数字越加越大,每超过一星期轮回,每个数字需要分身一次,你不需要计算机,只要知道它的分身方法,就可以知道继续累加的答案,它还有更神奇的地方等待你去发掘!也许,它就是宇宙的密码┅┅
    142857x1=142857(原数字)
    142857x2=285714(轮值)
    142857x3=428571(轮值)
    142857x4=571428(轮值)
    142857x5=714285(轮值)
    142857x6=857142(轮值)
    142857x7=999999(放假由9代班)
    142857x8=1142856(7分身,即分为头一个数字1与尾数6,数列内少了7)
    142857x9=1285713(4分身)
    142857x10=1428570(1分身)
    142857x11=1571427(8分身)
    142857x12=1714284(5分身)
    142857x13=1857141(2分身)
    142857x14=1999998(9也需要分身变大)
    继续算下去……
    以上各数的单数和都是“9”。有可能藏着一个大秘密。
    以上面的金字塔神秘数字举例:1+4+2+8+5+7=27=2+7=9;您瞧瞧,它们的单数和竟然都是“9”。依此类推,上面各个神秘数,它们的单数和都是“9”;怪也不怪!(它的双数和27还是3的三次方)无数巧合中必有概率,无数吻合中必有规律。何谓规律?大自然规定的纪律!科学就是总结事实,从中找出规律。
    任意取一个数字,例如取48965,将这个数字的各个数字进行求和,结果为4+8+9+6+5=32,再将结果求和,得3+2=5。我将这种求和的方法称为求一个数字的众数和。
    所有数字都有以下规律:
    [1]众数和为9的数字与任意数相乘,其结果的众数和都为9。例如306的众数和为9,而306*22=6732,数字6732的众数和也为9(6+7+3+2=18,1+8=9)。
    [2]众数和为1的数字与任意数相乘,其结果的众数与被乘数的众数和相等。例如13的众数和为4,325的众数和为1,而325*13=4225,数字4225的众数和也为4(4+2+2+5=13,1+3=4)。
    [3]总结得出一个普遍的规律,如果a*b=c,则众数和为a的数字与众数和为b的数字相乘,其结果的众数和亦与c的众数和相等。例如3*4=12。取一个众数和为3的数字,如201,再取一个众数和为4的数字,如112,两数相乘,结果为201*112=22512,22512的众数和为3(2+2+5+1+2=12,1+2=3),可见3*4=12,数字12的众数和亦为3。
    [4]另外,数字相加亦遵守此规律。例如3+4=7。求数字201和112的和,结果为313,求313的众数和,得数字7(3+1+3=7),刚好3与4相加的结果亦为7。
    令人奇怪的是,中国古人早就知道此数学规律。我们看看“河图”与“洛书”数字图就知道了。以下是“洛书”数字图。
    492
    357
    816(洛书)
    世人都知道,“洛书”数字图之所以出名,是因为它是世界上最早的幻方图,它的特点是任意一组数字进行相加,其结果都为15。其实用数字众数和的规律去分析此图,就会发现,任意一组数字的随机组合互相相乘,其结果的众数和都为9,例如第一排数字的一个随机组合数字为924,第二行的一个随机组合数字为159,两者相乘,其结果为146916,求其众数和,得1+4+6+9+1+6=27,2+7=9,可见,结果的众数和都为9。
    神奇的“缺8数”。
    12345679,这个数里缺少8,我们把它称为“缺8数”。
    开始,我以为这“缺8数”只有“清一色”的奇妙。谁知经过一番资料的查找,竟发现它还有许多让人惊讶的特点。
    一,清一色
    菲律宾前总统马科斯偏爱的数字不是8,却是7。
    于是有人对他说:“总统先生,你不是挺喜欢7吗?拿出你的计算器,我可以送你清一色的7。”
    接着,这人就用“缺8数”乘以63,顿时,777777777映入了马科斯先生的眼帘。
    “缺8数”实际上并非对7情有独钟,它是一碗水端平,对所有的数都一视同仁的:
    你只要分别用9的倍数(9,18……直到81)去乘它,则111111111,222222222……直到999999999都会相继出现。
    12345679x9=111111111
    12345679x18=222222222
    12345679x27=333333333
    12345679x36=444444444
    12345679x45=555555555
    12345679x54=666666666
    12345679x63=777777777
    12345679x72=888888888
    12345679x81=999999999
    二,三位一体
    “缺8数”引起研究者的浓厚兴趣,于是人们继续拿3的倍数与它相乘,发现乘积竟“三位一体”地重复出现。
    12345679x12=148148148
    12345679x15=185185185
    12345679x21=259259259
    12345679x30=370370370
    12345679x33=407407407
    12345679x36=444444444
    12345679x42=518518518
    12345679x48=592592592
    12345679x51=629629629
    12345679x57=703703703
    12345679x78=962962962
    12345679x81=999999999
    这里所得的九位数全由“三位一体”的数字组成,非常奇妙!
    三,轮流“休息”
    当乘数不是3的倍数时,此时虽然没有“清一色”或“三位一体”现象,但仍可看到一种奇异性质:
    乘积的各位数字均无雷同。缺什么数存在着明确的规律,它们是按照“均匀分布”出现的。
    另外,在乘积中,缺3、缺6、缺9的情况肯定不存在。
    先看一位数的情形:
    12345679x1=12345679(缺0和8)
    12345679x2=24691358(缺0和7)
    12345679x4=49382716(缺0和5)
    12345679x5=61728395(缺0和4)
    12345679x7=86419753(缺0和2)
    12345679x8=98765432(缺0和1)
    上面的乘积中,都不缺数字3,6,9,而都缺0。缺的另一个数字是8,7,5,4,2,1,且从大到小依次出现。
    让我们看一下乘数在区间[10~17]的情况,其中12和15因是3的倍数,予以排除。
    12345679x10=123456790(缺8)
    12345679x11=135802469(缺7)
    12345679x13=160493827(缺5)
    12345679x14=172869506(缺4)
    12345679x16=197530864(缺2)
    12345679x17=209876543(缺1)
    以上乘积中仍不缺3,6,9,但再也不缺0了,而缺少的另一个数与前面的类似——按大小的次序各出现一次。
    乘积中缺什么数,就像工厂或商店中职工“轮休”,人人有份,但也不能多吃多占,真是太有趣了!
    乘数在[19~26]及其他区间(区间长度等于7)的情况与此完全类似。
    12345679x19=234567901(缺8)
    12345679x20=246913580(缺7)
    12345679x22=271604938(缺5)
    12345679x23=283950617(缺4)
    12345679x25=308641975(缺2)
    12345679x26=320987654(缺1)
    一以贯之当乘数超过81时,乘积将至少是十位数,但上述的各种现象依然存在。再看几个例子:
    (1)乘数为9的倍数
    12345679x243=2999999997,只要把乘积中最左边的一个数2加到最右边的7上,仍呈现“清一色”。
    又如:12345679x108=1333333332(乘积中最左边的一个数1加到最右边的2上,恰好等于3)
    12345679x117=1444444443(乘积中最左边的一个数1加到最右边的3上,恰好等于4)
    12345679x171=2111111109(乘积中最左边的一个数2加最右边的“09”,结果为11)
    (2)乘数为3的倍数,但不是9的倍数
    12345679x84=1037037036,只要把乘积中最左边的一个数1加到最右边的6上,又可看到“三位一体”现象。
    (3)乘数为3k+1或3k+2型
    12345679x98=1209876542,表面上看来,乘积中出现雷同的2;
    但据上所说,只要把乘积中最左边的数1加到最右边的2上去之后,所得数为209876543,是“缺1”数。
    而根据上面的“学说”可知,此时正好轮到1休息,结果与理论完全吻合。
    四,走马灯
    冬去春来,24个节气仍然是立春、雨水、惊蛰……其次序完全不变,表现为周期性的重复。
    “缺8数”也有此种性质,但其乘数是相当奇异的。
    实际上,当乘数为19时,其乘积将是234567901,像走马灯一样,原先居第二位的数2却成了开路先锋。
    深入的研究显示,当乘数成一个公差等于9的算术级数时,出现“走马灯”现象。
    现在,我们又把乘数依次换为10,19,28,37,46,55,64,73(它们组成公差为9的等差数列):
    12345679x10=123456790
    12345679x19=234567901
    12345679x28=345679012
    12345679x37=456790123
    12345679x46=567901234
    12345679x55=679012345
    12345679x64=790123456
    12345679x73=901234567
    以上乘积全是“缺8数”!数字1,2,3,4,5,6,7,9像走马灯似的,依次轮流出现在各个数位上。
    五,回文结对携手同行
    “缺8数”的“精细结构”引起研究者的浓厚兴趣,人们偶然注意到:
    12345679x4=49382716
    12345679x5=61728395
    前一式的积数颠倒过来读(自右到左),不正好就是后一式的积数吗?
    (但有微小的差异,即5代以4,而根据“轮休学说”,这正是题中的应有之义。)
    这样的“回文结对,携手并进”现象,对13、14、31、32等各对乘数(每相邻两对乘数的对应公差均等于9)也应如此。
    例如:
    12345679x13=160493827
    12345679x14=172839506
    12345679x22=271604938
    12345679x23=283950617
    12345679x67=827160493
    12345679x68=839506172
    六,遗传因子
    “缺8数”还能“生儿育女”,这些后裔秉承其“遗传因子”,完全承袭上面的这些特征。
    所以这个庞大家族的成员几乎都同其始祖12345679具有同样的本领。
    例如,506172839是“缺8数”与41的乘积,所以它是一个衍生物。
    我们看到,506172839x3=1518518517。
    将乘积中最左边的数1加到最右边的7上之后,得到8。如前所述,“三位一体”模式又来到我们面前。
    “缺8数”还有更加神奇壮观的回文现象。我们继续做乘法:
    12345679x9=111111111
    12345679x99=1222222221
    12345679x999=12333333321
    12345679x9999=123444444321
    12345679x99999=1234555554321
    12345679x999999=12345666654321
    12345679x9999999=123456777654321
    12345679x99999999=1234567887654321
    12345679x999999999=12345678987654321
    奇迹出现了!等号右边全是回文数(从左读到右或从右读到左,同一个数)。
    而且,这些回文数全是“阶梯式”上升和下降,神奇、优美、有趣!
    因为12345679=333667x37,所以“缺8数”是一个合数。
    “缺8数”和它的两个因数333667、37,这三个数之间有一种奇特的关系。
    一个因数333667的首尾两个数3和7、就组成了另一个因数37;
    而“缺8数”本身数字之和1+2+3+4+5+6+7+9也等于37。
    可见“缺8数”与37天生结了缘。
    更令人惊奇的是,把181化成小数,这个小数也是“缺8数”:
    181=0.012345679012345679012345679……
    为什么别的数字都不缺,唯独缺少8呢?
    原来181=19x19=0.1111…x0.11111….
    这里的0.1111…是无穷小数,在小数点后面有无穷多个1。
    “缺8数”的奇妙性质,集中体现在大量地出现数学循环的现象上,而且这些循环非常有规律,令人惊讶。
    “缺8数”的奇特性质,早就引起了人们的浓厚兴趣。而它其中还有多少奥秘,人们一定会把它全部揭开。
    “缺8数”太奇妙了,让我这个对数学没啥兴趣的人也忍不住要大加赞美啊!
上一章 目录 到封面 加书签 下一章